8.1. Separation of variables

Solve the following equations using the method of separation of variables and superposition principle. To do so, write first a general solution solving the problem with boundary conditions, and then impose the initial values.
(a)

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & & (x, t) \in(0, \pi) \times(0, \infty), \\
u(0, t) & =0, & & t \in(0, \infty), \\
u(\pi, t) & =0, & & t \in(0, \infty), \\
u(x, 0) & =\sin (2 x)+\frac{1}{2} \sin (3 x)+5 \sin (5 x), & & x \in[0, \pi] .
\end{aligned}\right.
$$

(b)

$$
\left\{\begin{aligned}
u_{t t}-u_{x x} & =0, & & (x, t) \in(0, \pi) \times(0, \infty), \\
u(0, t) & =0, & & t \in(0, \infty), \\
u(\pi, t) & =0, & & t \in(0, \infty), \\
u(x, 0) & =\sin ^{3}(x), & & x \in[0, \pi], \\
u_{t}(x, 0) & =\sin (2 x), & & x \in[0, \pi] .
\end{aligned}\right.
$$

Hint: recall that $4 \sin ^{3}(x)=3 \sin (x)-\sin (3 x)$.
(c)

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & & (x, t) \in(0, \pi) \times(0, \infty), \\
u_{x}(0, t) & =0, & & t \in(0, \infty), \\
u_{x}(\pi, t) & =0, & & t \in(0, \infty), \\
u(x, 0) & =1+\cos (x) & & x \in[0, \pi] .
\end{aligned}\right.
$$

SOL:

(a) Assume that $u(x, t)=T(t) X(x)$, for some functions X and T yet to define. Plugging this in the heat equation we get that $T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x)$. Dividing both sides by $T(t) X(x)$ we obtain the identity

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)}
$$

Since the left hand side depends only x, and the right hand side on t, we infer that there exists $\lambda \in \mathbb{R}$ so that

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)}=\lambda .
$$

We get the two ODEs

$$
T^{\prime}(x)-\lambda T(x)=0, \text { and } X^{\prime \prime}(x)-\lambda X(x)=0 .
$$

The first equation has solution of the form $T(t)=A e^{\lambda t}$, for some constant $A \in \mathbb{R}$. The second one depends on the sign of λ :

$$
X(x)= \begin{cases}B \sin (\sqrt{-\lambda} x)+C \cos (\sqrt{-\lambda} x), & \text { if } \lambda<0 \\ B \sinh (\sqrt{\lambda} x)+C \cosh (\sqrt{\lambda} x), & \text { if } \lambda>0 \\ B x+C, & \text { if } \lambda=0\end{cases}
$$

for some constants B, C in \mathbb{R}. To select the right solution we take advantage of the boundary conditions $u(0, t)=u(\pi, t)=0$, meaning $X(0)=X(\pi)=0$. If $\lambda=0$ we have that $0=X(0)=C$ and $X(\pi)=\pi B=0$, implying that $X \equiv 0$. This is not what we are looking for. Same story if $\lambda>0: 0=X(0)=C$ and $0=X(\pi)=B \sinh (\sqrt{\lambda} \pi)$, imply once again that $X \equiv 0 \operatorname{since} \sinh (\sqrt{\lambda} \pi)>0$. Therefore, we are left with the only option $X(x)=B \sin (\sqrt{-\lambda} x)+C \cos (\sqrt{-\lambda} x)$ for some $\lambda<0$. Now,

$$
0=X(0)=C,
$$

implies

$$
X(x)=B \sin (\sqrt{-\lambda} x)
$$

and

$$
0=B \sin (\pi \sqrt{-\lambda})
$$

implies that if $B \neq 0$, then $\pi \sqrt{-\lambda}=n \pi$ for some $n \in \mathbb{N}$, hence $\lambda=-n^{2}$. By the superposition principle, we get the formal general solution

$$
u(x, t)=\sum_{n \geq 1} D_{n} e^{-n^{2} t} \sin (n x)
$$

The only data we have not used yet is the initial condition $u(x, 0)=\sin (2 x)+$ $\frac{1}{2} \sin (3 x)+5 \sin (5 x)$. Since

$$
u(x, 0)=\sum_{n \geq 1} D_{n} \sin (n x)
$$

we get that $D_{n}=1, \frac{1}{2}, 5$ if $n=2,3,5$ respectively, and $D_{n}=0$ otherwise, finally getting

$$
u(x, t)=e^{-4 t} \sin (2 x)+\frac{1}{2} e^{-9 t} \sin (3 x)+5 e^{-25 t} \sin (5 x)
$$

(b) Assume that $u(x, t)=T(t) X(x)$, for some functions X and T yet to define. Plugging this in the wave equation we get that $T^{\prime \prime}(t) X(x)=T(t) X^{\prime \prime}(x)$. Dividing both sides by $T(t) X(x)$ we obtain the identity

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{T(t)}
$$

Since the left hand side depends only x, and the right hand side on t, we infer that there exists $\lambda \in \mathbb{R}$ so that

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{T(t)}=\lambda .
$$

We get the two ODEs

$$
T^{\prime \prime}(x)-\lambda T(x)=0, \text { and } X^{\prime \prime}(x)-\lambda X(x)=0
$$

The solutions depend on the sign of λ :

$$
X(x)= \begin{cases}B \sin (\sqrt{-\lambda} x)+C \cos (\sqrt{-\lambda} x), & \text { if } \lambda<0 \\ B \sinh (\sqrt{\lambda} x)+C \cosh (\sqrt{\lambda} x), & \text { if } \lambda>0 \\ B x+C, & \text { if } \lambda=0\end{cases}
$$

for some constants B, C in \mathbb{R}. Since we imposed $u(x, 0)=u(\pi, 0)=0$, we select the correct family of solutions exactly as in point (a):

$$
X(x)=X_{n}(x)=B_{n} \sin (n x) .
$$

We do the same for T : since $\lambda=-n^{2}<0$ we get

$$
T(t)=A_{n} \sin (n t)+A_{n}^{\prime} \cos (n t)
$$

obtaining by superposition principle the formal general solution

$$
u(x, t)=\sum_{n \geq 1} \sin (n x)\left(D_{n} \sin (n t)+D_{n}^{\prime} \cos (n t)\right)
$$

By the initial conditions

$$
u(x, 0)=\frac{3}{4} \sin (x)-\frac{1}{4} \sin (3 x)
$$

and

$$
u_{t}(x, 0)=\sin (2 x),
$$

since

$$
u(x, 0)=\sum_{n \geq 1} D_{n}^{\prime} \sin (n x)
$$

and

$$
u_{t}(x, 0)=\sum_{n \geq 1} n D_{n} \sin (n x),
$$

we get that $D_{n}^{\prime}=\frac{3}{4},-\frac{1}{4}$ if $n=1,3$ respectively and $D_{n}=\frac{1}{2}$ if $n=2$. Finally,

$$
u(x, t)=\frac{3}{4} \sin (x) \cos (t)+\frac{1}{2} \sin (2 x) \sin (2 t)-\frac{1}{4} \sin (3 x) \cos (3 t) .
$$

(c) Assume that $u(x, t)=T(t) X(x)$, for some functions X and T yet to define. Plugging this in the heat equation we get that $T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x)$. Dividing both sides by $T(t) X(x)$ we obtain the identity

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)} .
$$

Since the left hand side depends only x, and the right hand side on t, we infer that there exists $\lambda \in \mathbb{R}$ so that

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)}=\lambda .
$$

We get the two ODEs

$$
T^{\prime}(x)-\lambda T(x)=0, \text { and } X^{\prime \prime}(x)-\lambda X(x)=0 .
$$

The first equation has solution of the form $T(t)=A e^{\lambda t}$, for some constant $A \in \mathbb{R}$. The second one depends on the sign of λ :

$$
X(x)= \begin{cases}B \sin (\sqrt{-\lambda} x)+C \cos (\sqrt{-\lambda} x), & \text { if } \lambda<0 \\ B \sinh (\sqrt{\lambda} x)+C \cosh (\sqrt{\lambda} x), & \text { if } \lambda>0 \\ B x+C, & \text { if } \lambda=0\end{cases}
$$

for some constants B, C in \mathbb{R}. To select the right solution we take advantage of the Neumann boundary conditions $u_{x}(0, t)=u_{x}(\pi, t)=0$, meaning $X^{\prime}(0)=0$. Now

$$
X^{\prime}(x)= \begin{cases}B \sqrt{-\lambda} \cos (\sqrt{-\lambda} x)-C \sqrt{-\lambda} \sin (\sqrt{-\lambda} x), & \text { if } \lambda<0 \\ B \sqrt{\lambda} \cosh (\sqrt{\lambda} x)+C \sqrt{\lambda} \sinh (\sqrt{\lambda} x), & \text { if } \lambda>0 \\ B, & \text { if } \lambda=0\end{cases}
$$

If $\lambda=0$ we have the solution $X(x)=$ constant. If $\lambda>0$ it is easy to check that we have only the trivial solution (similar to point (a)). If $\lambda<0$ we get that $B=0$, obtaining the solutions

$$
X(x)=C \cos (\sqrt{-\lambda} x)
$$

Finally, since $u(x, 0)=1+\cos (x)$ we get by superposition principle that

$$
u(x, t)=1+e^{-t} \cos (x)
$$

8.2. Multiple choice Cross the correct answer(s).
(a) Let u be solution of the heat equation

$$
\begin{cases}u_{t}-k u_{x x}=0, & (x, t) \in(0, L) \times(0, \infty), \\ u(0, t)=u(L, t)=0, & t>0, \\ u(x, 0)=f(x), & x \in(0, L)\end{cases}
$$

for $f \in C^{\infty}(0, T)$. Then, for all $a>0$
$\bigcirc \lim _{t \rightarrow+\infty} \int_{0}^{L} u(x, t)^{2} d x=+\infty$
$\mathrm{X} \lim _{t \rightarrow+\infty} t^{a} \int_{0}^{L} u(x, t)^{2} d x=0$
$\mathrm{X} \lim _{t \rightarrow+\infty} \int_{0}^{L} u(x, t)^{2} d x=0$
$\bigcirc \lim _{t \rightarrow+\infty} t^{a} \int_{0}^{L} u(x, t)^{2} d x=+\infty$

SOL: We show this for $L=\pi$, the case with general period $L>0$ is the same up to rescaling. By the method of separation of variables we have that $u(x, t)=$ $\sum_{n \geq 1} A_{n} e^{-n^{2} t} \sin (n x)$, where A_{n} are the Fourier coefficients of f, meaning $f(x)=$ $\sum_{n \geq 1} A_{n} \sin (n x)$. Since

$$
\int_{0}^{\pi} \sin (n x) \sin (m x) d x= \begin{cases}\frac{\pi}{2}, & \text { if } n=m \\ 0, & \text { otherwise }\end{cases}
$$

we infer that ${ }^{1}$

$$
\frac{2}{\pi} \int_{0}^{\pi} f(x)^{2} d x=\frac{2}{\pi} \sum_{m, n \geq 1} A_{n} A_{m} \int_{0}^{\pi} \sin (n x) \sin (m x) d x=\sum_{n \geq 1} A_{n}^{2} .
$$

Similarly,

$$
\frac{2}{\pi} \int_{0}^{\pi} u(x, t)^{2} d x=\sum_{n \geq 1} e^{-2 n^{2} t} A_{n}^{2} \leq e^{-2 t} \sum_{n \geq 1} A_{n}^{2}=e^{-t} \underbrace{\frac{2}{\pi} \int_{0}^{\pi} f(x)^{2} d x}_{\text {constant in } t} \rightarrow 0,
$$

as $t \rightarrow+\infty$. This is still true if we multiply the expression by t^{a}, since the exponential decreases faster than any polynomial.
(b) Consider the periodic homogeneous wave equation

$$
\begin{cases}u_{t t}-4 u_{x x}=0, & (x, t) \in[0,1] \times[0,+\infty) \\ u_{x}(0, t)=u_{x}(1, t)=0, & t>0, \\ u(x, 0)=1+2021 \cos (2 \pi x), & x \in[0,1], \\ u_{t}(x, 0)=\cos (40 \pi x), & x \in[0,1] .\end{cases}
$$

Then, for a fixed point $\bar{x} \in[0,1]$, the function $t \mapsto u(\bar{x}, t)$ has period

[^0]$1 / 40$
X $1 / 2$
2π
$\bigcirc \pi$

SOL: We have to solve for $u(x, t)$ via separation of variables. Arguing as in Exercise 1 , setting $u(x, t)=X(x) T(t)$ we get

$$
X^{\prime \prime}(x)-\frac{\lambda}{4} X(x)=0, \text { and } T^{\prime \prime}(t)-\lambda T(t)=0,
$$

for some constant $\lambda \in \mathbb{R}$. We have possible solutions

$$
X(x)= \begin{cases}B \sin (\sqrt{-\lambda} x / 2)+C \cos (\sqrt{-\lambda} x / 2), & \text { if } \lambda<0 \\ B \sinh (\sqrt{\lambda} x / 2)+C \cosh (\sqrt{\lambda} x / 2), & \text { if } \lambda>0 \\ B x+C, & \text { if } \lambda=0\end{cases}
$$

The Neumann boundary conditions $u_{x}(0, t)=u_{x}(1, t)=0$ imply that we have $X(x)=$ contant when $\lambda=0, X \equiv 0$ if $\lambda>0$ and $X(x)=C \cos (\sqrt{-\lambda} x / 2)$ if $\lambda<0$. From and $X^{\prime}(1)=0$, we get that

$$
X^{\prime}(1)=-C \frac{\sqrt{-\lambda}}{2} \sin (\sqrt{-\lambda} / 2)=0
$$

which is possible when $\sqrt{-\lambda} / 2=n \pi$ for $n \in \mathbb{N}$, that is $-\lambda=4 n^{2} \pi^{2}$. The ODE for T is then given by

$$
T^{\prime \prime}(t)+4 n^{2} \pi^{2} T(t)=0
$$

giving $T(t)=T_{n}(t)=A_{n} \sin (2 n \pi t)+A_{n}^{\prime} \cos (2 n \pi)$ when $\lambda>0$, and $T(t)=A_{0} t+A_{0}^{\prime}$ when $\lambda=0$. By superposition principle

$$
u(x, t)=A_{0} t+A_{0}^{\prime}+\sum_{n \geq 1} \cos (n \pi x)\left(D_{n} \sin (2 \pi n t)+D_{n}^{\prime} \cos (2 \pi n t)\right)
$$

It is time to use the remaining initial conditions:

$$
u(x, 0)=1+2021 \cos (2 \pi x)=A_{0}^{\prime}+\sum_{n \geq 1} D_{n}^{\prime} \cos (n \pi x)
$$

implies $A_{0}^{\prime}=1, D_{2}^{\prime}=2021$, and

$$
u_{t}(x, 0)=\cos (40 \pi x)=A_{0}+\sum_{n \geq 1} 2 \pi n D_{n} \cos (n \pi x)
$$

implies $A_{0}=0$ and $D_{40}=\frac{1}{80 \pi}$. Putting everythig together

$$
u(x, t)=1+2021 \cos (2 \pi x) \cos (4 \pi n t)+\frac{1}{80 \pi} \cos (40 \pi x) \sin (80 \pi t)
$$

[^0]: ${ }^{1}$ This is the so called Parseval's identity

